Home
Class 11
MATHS
(2^(2)*C(0))/(1.2)+(2^(3)*C(1))/(2.3)+(2...

(2^(2)*C_(0))/(1.2)+(2^(3)*C_(1))/(2.3)+(2^(4)*C_(2))/(3.4)+...+(2^(n+2)*C_(n))/((n+1)(n+2))=

Promotional Banner

Similar Questions

Explore conceptually related problems

2.C_(0)+(2^(2)*C_(1))/(2)+(2^(3)*C_(2))/(3)+(2^(4)*C_(3))/(4)+.........+(2^(n+1)*C_(n))/(n+1)=(3^(n+1)-1)/(n+1)

2.C_(0)+(2^(2).C_(1))/(2)+(2^(3).C_(2))/(3)+(2^(4).C_(3))/(4)+......+(2^(n+1).C_(n))/(n+1)=(3^(n+1)-1)/(n+1)

(C_(0))/(1.2)+(C_(1))/(2.3)+(C_(2))/(3.4)+......*(C_(n))/((n+1)(n+2))=

(C_(0))/(1*2)+(C_(1))/(2*3)+(C_(2))/(3*4)+...+(C_(n))/((n+1)(n+2))=

2*^(n)C_(0)+2^(2)*(*^(n)C_(1))/(2)+2^(3)*(*^(n)C_(2))/(3)+...+2^(n+1)*(*^(n)C_(n))/(n+1)=

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + … + C_(n) x^(n) , Show that (2^(2))/(1*2) C_(0) + (2^(3))/(2*3) C_(1) + (2^(4))/(3*4)C_(2) + ...+ (2^(n+2)C_n)/((n+1)(n+2))= (3^(n+2)-2n-5)/((n+1)(n+2))

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + … + C_(n) x^(n) , Show that (2^(2))/(1*2) C_(0) + (2^(3))/(2*3) C_(1) + (2^(4))/(3*4)C_(2) + ...+ (2^(n+2)C_n)/((n+1)(n+2))= (3^(n+2)-2n-5)/((n+1)(n+2))

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + … + C_(n) x^(n) , Show that (2^(2))/(1*2) C_(0) + (2^(3))/(2*3) C_(1) + (2^(4))/(3*4)C_(2) + ...+ (2^(n+2)C_n)/((n+1)(n+2))= (3^(n+2))/((n+1)(n+2))