Home
Class 12
MATHS
Find the value of x given that 2log(10) ...

Find the value of `x` given that `2log_(10) (2^x-1)=log_(10) 2+log_(10)(2^x+3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of x satisfying (log_(10)(2^(x)+x-41)=x(1-log_(10)5)

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1

Find the value of x in (log.2)(log_(x)625)=(log_(10)16)(log10)

The value of x satisfying x+log_10(1+2^x)=x log_10 5+log_10 6 is

log_(10)^(2) x + log_(10) x^(2) = log_(10)^(2) 2 - 1

Given that log_10 2 =x, log_10 3 =y then log_10 1.2=

if x+log_(10)(1+2^(x))=x log_(10)5+log_(10)6 then x

Positive numbers x,y backslash and backslash z satisfy xyz:)=(:10^(1) and (log_(10)x)*(log_(10)yz)+(log_(10)y)*(log_(10)z)=468. Find the value of (log_(10)x)^(2)+(log_(10)y)^(2)+(log_(10)z)^(2)

Positive numbers x,y and z satisfy xyz=10^(81) and (log_(10)x)(log_(10)yz)+(log_(10)y)(log_(10)z)=468. Find the value of (log_(10)x)^(2)+(log_(10)y)^(2)+(log_(10)z)^(2)