Home
Class 11
MATHS
tan(cos^(-1)x)=sin(cot^(-1)(1)/(2))...

tan(cos^(-1)x)=sin(cot^(-1)(1)/(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Slove: tan(cos^-1x)=sin(cot^-1""1/2)

tan(Cos^(-1)1//x)=sin(Cot^(-1)1//2),"if "xne0 then x =

If: cos(tan^(-1)x)=sin (cot^(-1).(3)/(4)), then : x =

Solve : cos(tan^(-1)x)=sin(cot^(-1)""(3)/(4))

Prove that cos [tan^(-1){(sin(cot^(-1)x}] =((x^(2)+1)/(x^(2)+2)) ^(1/2)

Solve cos(tan^-1x) = sin(cot^-1 (3/4))

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]

int_(-1)^(1)[tan^(-1){sin(cos^(-1)x)}+cot^(-1){cos(sin^(-1)x)}dx=