Home
Class 12
MATHS
C(1)+2*C(2)+3*C(3)+...+n*C(n)=...

C_(1)+2*C_(2)+3*C_(3)+...+n*C_(n)=

Promotional Banner

Similar Questions

Explore conceptually related problems

(1-x)^(n)=C_(0)-C_(1)x+C_(2)x^(2)-C_(3)x^(3)+...+C_(r)(-1)^(r)x^(r)+.....+(-1)^(n)x^(n) Show that , C_(1)+2C_(2)+3C_(3)+.....+n.C_(n)=n.2^(n-1)

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

If C_(0),C_(1),C_(2)…….,C_(n) are the combinatorial coefficient in the expansion of (1+x)^n, n, ne N , then prove that following C_(1)+2C_(2)+3C_(3)+..+n.C_(n)=n.2^(n-1) C_(0)+2C_(1)+3C_(2)+......+(n+1)C_(n)=(n+2)C_(n)=(n+2)2^(n-1) C_(0),+3C_(1)+5C_(2)+.....+(2n+1)C_n =(n+1)2^n (C_0+C_1)(C_1+C_2)(C_2+C_3)......(C_(n-1)+C_n)=(C_0.C_1.C_2....C_(n-1)(n+1)^n)/(n!) 1.C_0^2+3.C_1^2+....+ (2n+1)C_n^2=((n+1)(2n)!)/(n! n!)

If (1+x)^(n)=C_(0)+C_(1).x+C_(2).x^(2)+C_(3).x^(3)+......+C_(n).x^(n), then prove that C_(0)+2C_(1)+4C_(2)+6C_(3)+...+2n.C_(n)=1+n*2^(n)

If (1+x)^(n)=C_(0)+C_(1).x+C_(2).x^(2)+C_(3).x^(3)+......+C_(n).x^(n), then prove that C_(0)+2C_(1)+4C_(2)+6C_(3)+...+2n.C_(n)=1+n*2^(n)

If (1+x)^(n)=C_(0)+C_(1)+x+C_(2)x^(2)+...+C_(n) x^(n) Show that C_(1)^(2)+2*C_(2)^(2)+3*C_(3)^(2)....+n*C_(n)^(2)=((2n-1)!)/([(n-1)!]^(2))

Prove that (i) C_(1)+2C_(2)+3C_(3)+……+nC_(n)=n.2^(n-1) (ii) C_(0)+(C_(1)/(2)+(C_(2))/(3)+….+(C_(n))/(n+1)=(2^(n+1)-1)/(n+1)