Home
Class 9
MATHS
" (iv) "(1)/(2+sqrt(3))+(2)/(sqrt(5)-sqr...

" (iv) "(1)/(2+sqrt(3))+(2)/(sqrt(5)-sqrt(3))+(1)/(2-sqrt(5))

Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(2+sqrt(3))+(2)/(sqrt(5)-sqrt(3))+(1)/(2-sqrt(5))=0

Simplify: (7+3sqrt(5))/(3+sqrt(5))-(7-3sqrt(5))/(3-sqrt(5)) (ii) (1)/(2+sqrt(3))+(2)/(sqrt(5)-sqrt(3))+(1)/(2-sqrt(5))

Simplify: (i) (7+3\ sqrt(5))/(3+\ sqrt(5))-(7-3\ sqrt(5))/(3-\ sqrt(5)) (ii) 1/(2+sqrt(3)\ )+2/(sqrt(5)-\ sqrt(3))+1/(2-\ sqrt(5))

Prove that (i) (1)/(3+sqrt(7)) + (1)/(sqrt(7)+sqrt(5))+(1)/(sqrt(5)+sqrt(3)) +(1)/(sqrt(3)+1)=1 (ii) (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7)) +(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8) + sqrt(9)) = 2

Show that (1)/(sqrt(2)+sqrt(3))-(2)/(sqrt(5)-sqrt(3))+(3)/(sqrt(5)-sqrt(2))=0 .

1/(sqrt(3)+sqrt(2))-2/(sqrt(5)-sqrt(3))-3/(sqrt(2)-sqrt(5))

(1)/(sqrt(2)+sqrt(3))-(2)/(sqrt(5)-sqrt(3))+(3)/(sqrt(5)-sqrt(2))=

Simplify (i) (4+ sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/(4+sqrt(5)) (ii) (1)/(sqrt(3) + sqrt(2)) - (2)/(sqrt(5)-sqrt(3)) -(2)/(sqrt(2) - sqrt(5)) (iii) (2+sqrt(3))/(2-sqrt(3)) + (2-sqrt(3))/(2+sqrt(3)) + (sqrt(3)-1)/(sqrt(3)+1) (iv) (2+sqrt(6))/(sqrt(2)+sqrt(3))+(6sqrt(2))/(sqrt(6)+sqrt(3)) -(8sqrt(3))/(sqrt(6)+sqrt(2))

Show that : (1)/(3-2sqrt(2))- (1)/(2sqrt(2)-sqrt(7)) + (1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5 .

Rationalise the denominator of each of the following. (i) (1)/(sqrt(7)) (ii) (sqrt(5))/(2sqrt(3)) (iii) (1)/(2+ sqrt(3)) (1)/(sqrt(3)) (v) (1)/((5+3sqrt(2)) (vi) (1)/(sqrt(7) - sqrt(6)) (vi) (1)/(sqrt(7) - sqrt(6)) (viii) (1+ sqrt(2))/(2-sqrt(2)) (ix) (3-2sqrt(2))/(3+2sqrt(2))