Home
Class 12
MATHS
(10)*log(7)(2x-3)...

(10)*log_(7)(2x-3)

Promotional Banner

Similar Questions

Explore conceptually related problems

For what value of x log_(3)(x^(2)+10)>log_(3)(7x)

The number of real solution of the equation log_(10)(7x-9)^(2)+log_(10)(3x-4)^(2)=2 is

log_(10)(7x-9)^(2)+log_(10)(3x-4)^(2)=2 The number of real solutions of the equation

Find the value of (i) (log_(10)5)(log_(10)20)+(log_(10)2)^(2) (ii) root3(5^((1)/(log_(7)5))+(1)/((-log_(10)0.1))) (iii) log_(0.75)log_(2)sqrtsqrt((1)/(0.125)) (iv)5^(log_(sqrt(5))2)+9^(log_(3)7)-8^(log_(2)5) (v)((1)/(49))^(1+log_(7)2)+5^(-log_(1//5)7) (vi) 7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

Find x if (1)/(2)log_(10)(11+4sqrt(7))=log_(10)(2+x)

E=(3^(log_(3)sqrt(9^(|x-2|)))+7^((1/5)log_(7)(4).3^(|x-2|)-9 ))^(7)

If log_(10) 2, log_(10)(2^(x) -1) , log_(10)(2^(x)+3) are in AP, then what is x equal to?

If log_(10)2, log_(10)(2^(x)-1) and log_(10)(2^(x)+3) are three consecutive terms of an A.P, then the value of x is

If log_(10)2,log_(10)(2^(x)-1) and log_(10)(2^(x)+3) are in A.P then the value of x is