Home
Class 11
MATHS
[" 7.In a triangle "ABC," if "sin A sin(...

[" 7.In a triangle "ABC," if "sin A sin(B-C)=sin C sin(A-B)" ,"],[" then prove that "cot A,cot B,cot C" are in A.P.."]

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC,if sin A sin(B-C)=sin C sin(A-B), then prove that cot A,cot B,cot C are in AP

In a triangle ABC, if sin A sin (B-C)= sin c sin (A-B) , then prove that cotA, cotB, CotC are in AP.

If a^(2),b^(2),c^(2) are in A.P.then prove that cot A,cot B,cot C are in A.P.

If a^(2),b^(2),c^(2) are in A.P.prove that cot A,cot B,cot C are in A.P.

If in a triangle ABC, sin A, sin B, sin C are in A.P, then

If cos(A+B)sin(C+D)=cos(A-B)sin(C-D) , prove that cot A cot B cot C=cotD .

If cos(A+B)sin(C+D)=cos(A-B)sin(C-D) , prove that cot A cot B cot C=cotD .

If cos(A+B)sin(C+D)=cos(A-B)sin(C-D) , prove that cot A cot B cot C=cotD .

If cos(A+B)sin(C+D)=cos(A-B)sin(C-D) , prove that cot A cot B cot C= cot D.

If a^(2),b^(2) and c^(2) be in A.P. prove that cot A,cot B and cot C are in A.P. also.