Home
Class 12
MATHS
tan A=(17)/(18),tan B=(1)/(35)rArr cos(A...

tan A=(17)/(18),tan B=(1)/(35)rArr cos(A+B)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan A=(17)/(18),tan B=(1)/(35) then cos(A+B)=

tan A=(n)/(n+1),tan B=(1)/(2n+1)rArr A+B=

If Tan A = (17)/(18), TanB = (1)/(35) then Cos (A+B) =

If tan A =18//17 , tan B=1//35 then tan (A-B)=

2tan A tan B = 1rArr (cos (AB)) / (cos (A + B))

If sec A-tan A=(1)/(4), then (a)sin2A=(8)/(17)(b)sin A+cos A=(23)/(17)

If tanA=18/17 and tanB=1/35 prove that tan(A-B)=1

tan A = (1-cos B) / (sin B) rArr tan2A-tan B =

If sin A = (3)/(5) and cos B = (12)/(13) . Then the value of (tan A - tan B)/(1 + tan A tan B) is equal to

prove that tan ((pi) / (4) + (1) / (2) cos ^ (- 1) ((a) / (b))) + tan ((pi) / (4) - (1) / (2) cos ^ (- 1) ((a) / (b))) = (b) / (a) cos ^ (- 1) ((cos x + cos y) / (1 + cos x cos y) ) = 2tan ^ (- 1) ((tan x) / (2) (tan y) / (2))