Home
Class 12
MATHS
tan^(-1)(sqrt(1+x^(2))-1)/(x)=4^(@)...

tan^(-1)(sqrt(1+x^(2))-1)/(x)=4^(@)

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(x+sqrt(1+x^(2)))=

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1) ((x)/(sqrt(1-x^(2)))) .

Differentiate tan^(-1)((1+2x)/(1-2x))w*r.t sqrt(1+4x^(2))tan^(-1)((sqrt(1+x^(2))-1)/(x)) with respect to tan^(-1)(x)

tan[(sqrt(1+x^(2))-1)/x] =

If y="tan"^(-1) (sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))) show that, (dy)/(dx)=(x)/(sqrt(1-x^(4)))

if tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))}=alpha then

if tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))}=alpha then

Prove that tan^(-1)((sqrt(1+x^2)-1)/x)=1/2 tan^(-1)x .