Home
Class 11
MATHS
" (i) "log(x+(1)/(x))...

" (i) "log(x+(1)/(x))

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x) =log(x-1)-log(x-2) and g(x) =log((x-1)/(x-2)) are identical on

If f.(x)= log((1+x)/(1-x)) , then

If f.(x)= log((1+x)/(1-x)) , then

The value of int_(-1)^(1) log ((x-1)/(x+1))dx is

Evaluate: int e^(x)(log x+(1)/(x))dx

If y=(x-1)log(x-1)-(x+1)log(x+1), prove : (dy)/(dx)=log((x-1)/(1+x))

If =(x-1)log(x-1)-(x+1)log(x+1) prove that (dy)/(dx)=log((x-1)/(1+x))

If y = (x-1)log(x-1)-(x+1)log(x+1) , prove that : dy/dx = log((x-1)/(1+x))

If y=(x-1)log(x-1)-(x+1)log(x+1) , prove that : dy/dx = log((x-1)/(1+x))