Home
Class 12
MATHS
Find the value of x such that [[1, x, 1]...

Find the value of `x` such that `[[1, x, 1]][[1 ,3, 2],[2, 5 ,1],[ 15 ,3 ,2]][[1], [2],[x]]=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given by the matrix multiplication, we will follow these steps: ### Step 1: Define the matrices Let: - \( A = \begin{bmatrix} 1 & x & 1 \end{bmatrix} \) (1x3 matrix) - \( B = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix} \) (3x3 matrix) - \( C = \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix} \) (3x1 matrix) ### Step 2: Multiply matrices A and B To find the product \( AB \): \[ AB = \begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 15 \end{bmatrix} = 1 \cdot 1 + x \cdot 2 + 1 \cdot 15 = 1 + 2x + 15 = 16 + 2x \] \[ AB = \begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \\ 3 \end{bmatrix} = 1 \cdot 3 + x \cdot 5 + 1 \cdot 3 = 3 + 5x + 3 = 6 + 5x \] \[ AB = \begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} = 1 \cdot 2 + x \cdot 1 + 1 \cdot 2 = 2 + x + 2 = 4 + x \] Thus, we have: \[ AB = \begin{bmatrix} 16 + 2x & 6 + 5x & 4 + x \end{bmatrix} \] ### Step 3: Multiply the result with matrix C Now, we multiply \( AB \) with \( C \): \[ (AB)C = \begin{bmatrix} 16 + 2x & 6 + 5x & 4 + x \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix} \] Calculating this gives: \[ = (16 + 2x) \cdot 1 + (6 + 5x) \cdot 2 + (4 + x) \cdot x \] \[ = 16 + 2x + 12 + 10x + 4 + x^2 \] \[ = x^2 + 13x + 28 \] ### Step 4: Set the equation to zero We need this product to equal the null matrix (0): \[ x^2 + 13x + 28 = 0 \] ### Step 5: Solve the quadratic equation Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = 13, c = 28 \): \[ x = \frac{-13 \pm \sqrt{13^2 - 4 \cdot 1 \cdot 28}}{2 \cdot 1} \] \[ = \frac{-13 \pm \sqrt{169 - 112}}{2} \] \[ = \frac{-13 \pm \sqrt{57}}{2} \] ### Step 6: Calculate the roots The roots are: \[ x = \frac{-13 + \sqrt{57}}{2} \quad \text{and} \quad x = \frac{-13 - \sqrt{57}}{2} \] ### Final Result Thus, the values of \( x \) are: \[ x = \frac{-13 + \sqrt{57}}{2} \quad \text{and} \quad x = \frac{-13 - \sqrt{57}}{2} \] ---

To solve the equation given by the matrix multiplication, we will follow these steps: ### Step 1: Define the matrices Let: - \( A = \begin{bmatrix} 1 & x & 1 \end{bmatrix} \) (1x3 matrix) - \( B = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix} \) (3x3 matrix) - \( C = \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix} \) (3x1 matrix) ...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF VECTORS

    RD SHARMA|Exercise Solved Examples And Exercises|331 Videos

Similar Questions

Explore conceptually related problems

The value of x so that [[1,x,1]][[1,3,2] , [0,5,1] , [0,3,2]][[1], [1], [x]]=0 is

Find the value of x such that [1,x,1][[1,2,3],[4,5,6],[3,2,5]][[1],[-2],[3]]=O

If [[1,x,1]] xx [[1,3,2],[2,5,1],[15,3,2]] xx [[1],[2],[x]]=0, find the value of x

If [[1,x,1]][[1,3,2],[0,5,1],[0,3,2]][[x],[1],[-2]]=0 , then x is

Find the value of x if |[1+x,1-x,1],[2,4+x,3],[-1,1,2]|=0

If [[1,x,1]][[1,2,3],[0,5,1],[0,3,2]][[x],[1],[-2]]=0 , then the value of x is

Find the value of x, if [1x1][{:(1,3,2),(2,5,1),(15,3,2):}][{:(1),(2),(x):}]=0

Find the value of x, if |[(3+x), 5, 2],[1, (7+x), 6], [2, 5, (3+x)]| = 0

Find the value of x, if [1x1][{:(1,3,2),(2,5,1),(15,3,2):}][{:(1),(2),(x):}]=O.

Find the value of x if, /_\ = |[x^(2),1,x],[0,3,-1],[x,-1,1]|=0

RD SHARMA-ALGEBRA OF MATRICES-Solved Examples And Exercises
  1. If X and Y are 2xx2 matrices, then solve the following matrix equat...

    Text Solution

    |

  2. If A=[[alpha, 0], [1, 1]] and B=[[1 ,0],[ 5 ,1]], find the values of a...

    Text Solution

    |

  3. Find the value of x such that [[1, x, 1]][[1 ,3, 2],[2, 5 ,1],[ 15 ,3 ...

    Text Solution

    |

  4. If A=[[1,-1],[2,-1]],B=[[a,1],[b, -1]] and (A+B)^2=A^2+B^2, find the v...

    Text Solution

    |

  5. If A= [[0, 1],[-1, 0]], find xand y such that (x I+y A)^2=A

    Text Solution

    |

  6. If [(2,-1),(1,0),(-3,4)]A=[(-1,-8,-10),(1,-2,-5),(9,22,15)], find A.

    Text Solution

    |

  7. Let f(x)=x^2-5x+6. Find f(A), if A=[[2, 0 ,1],[2, 1, 3],[ 1,-1, 0]]

    Text Solution

    |

  8. If A and B are symmetric matrices of the same order, write whether AB-...

    Text Solution

    |

  9. If A is a square matrix such that A^2=A ,then (I+A)^3-7A is equal to

    Text Solution

    |

  10. If A is a square matrix such that A^2=A , then write the value of 7A-(...

    Text Solution

    |

  11. Construct a 3xx4 matrix A=[a(i j)] whose elements are given by (i)a...

    Text Solution

    |

  12. If [x-y2x+z2x-y3z+w]=[-1 5 0 13] , find x ,\ y ,\ z ,\ wdot

    Text Solution

    |

  13. Find the values of x ,\ y ,\ z and a which satisfy the matrix equ...

    Text Solution

    |

  14. A matrix has 12 elements. What are the possible orders it can have?

    Text Solution

    |

  15. If A=[a(i j)] is a matrix given by A=[a(i j)]=[4 5 21\ \ -2 7 15\ \ 1 ...

    Text Solution

    |

  16. A matrix has 12 elements. What are the possible orders it can have?

    Text Solution

    |

  17. Construct a 2xx2 matrix A=[a(i j)] whose elements are given by a(i ...

    Text Solution

    |

  18. Construct a 2xx3 matrix A=[a(i j)] whose elements are given by a(i ...

    Text Solution

    |

  19. Construct a 3xx2 matrix A=[a(i j)] whose elements are given by a(i ...

    Text Solution

    |

  20. Find x ,\ y ,\ z and w such that [(x-y,2z+w),(2x-y,2x+w)]=[(5, 3 ),(...

    Text Solution

    |