Home
Class 12
MATHS
tan^(-1)(n/(n+1))-tan^(-1)(2n+1)=(3pi)/4...

`tan^(-1)(n/(n+1))-tan^(-1)(2n+1)=(3pi)/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)((3)/(n))+tan^(-1)((4)/(n))=(pi)/(2)

sum_(r=1)^(n) tan^(-1)(2^(r-1)/(1+2^(2r-1))) is equal to a) tan^(-1)(2^n) b) tan^(-1)(2)^n-pi/4 c) tan^(-1)(2^(n+1)) d) tan^(-1)(2^(n+1))-pi/4

Statement 1: If agt0,bgt0, tan^(-1)(a/x)+tan^(-1)(b/x)=(pi)/2 . implies x=sqrt(ab) Statement 2: If m,n epsilonN,ngem, then "tan"^(-1)(m/n)+tan^(-1)(n-m)/(n+m)=(pi)/4 .

Statement 1: If agt0,bgt0, tan^(-1)(a/x)+tan^(-1)(b/x)=(pi)/2 . implies x=sqrt(ab) Statement 2: If m,n epsilonN,ngem, then "tan"^(-1)(m/n)+tan^(-1)(n-m)/(n+m)=(pi)/4 .

For n in N ,if tan^(-1)((1)/(3))+tan^(-1)((1)/(4))+tan^(-1)((1)/(5))+tan^(-1)((1)/(n))=(pi)/(4) ,then (n-2)/(15) is equal to

Prove that tan^(-1)((m)/(n))-tan^(-1)((m-n)/(m+n))=(pi)/(4).

Prove that: "tan"^(-1)(m)/(n)-tan^(-1)((m-n)/(m+n))=(pi)/(4). m, n gt 0

Prove that: tan^(-1)(m/n)+tan^(-1)((n-m)/(n+m))=pi/4

Prove that: tan^(-1)((m)/(n))+tan^(-1)((n-m)/(n+m))=[(pi)/(4)(m)/(n)>;-1(-3 pi)/(4)(m)/(n)<-1

Prove that: tan^(-1)(m/n)+tan^(-1)((n-m)/(n+m))=[pi/4; m^(2)/n^(2) > -1