Home
Class 10
MATHS
(b)/(a)x+(a)/(b)y=a^(2)+b^(2)*x+y=2ab...

(b)/(a)x+(a)/(b)y=a^(2)+b^(2)*x+y=2ab

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following system of equations by method of cross-multiplication: (b)/(a)x+(a)/(b)y=a^(2)+b^(2),quad x+y=2ab

(b/a)x+(a/b)y=a^2b^2; x+y=2ab

(bx ) /(a) + ( ay ) /( b) = a ^(2) + b ^(2) , x + y = 2ab

If (x+iy)^(1/3)=a+ib,x,y,ab in R. Show that (x)/(a)+(y)/(b)=4(a^(2)-b^(2))( ii) (x)/(a)-(y)/(b)=2(a^(2)+b^(2))

Solve for x and y. (a-b)x+(a+b)y=a^(2)-2ab-b^(2) , (a+b)(x+y)=a^(2)+b^(2)

If (x+1)/(x-1)=(a)/(b) and (1-y)/(1+y)=(b)/(a), then the value of (x-y)/(1+xy) is (2ab)/(a^(2)-b^(2)) (b) (a^(2)-b^(2))/(2ab) (c) (a^(2)+b^(2))/(2ab) (d) (a^(2)-b^(2)backslash)/(ab)

(a)/(x)-(b)/(y)=0,(ab^(2))/(x)+(a^(2)b)/(y)=a^(2)+b^(2)

Solve (by any method) : (a-b)x+(a+b)y=a^(2)-2ab-b^(2) (a+b)(x+y)=a^(2)+b^(2)

Solve the following pair of linear equations: (a-b)x+(a+b)y=a^(2)-2ab-b^(2) (a+b)(x+y)=a^(2)+b^(2)

Solve the following pair of linear equations : (a-b)x+(a+b)y=a^(2)-2ab-b^(2) (a+b)(x+y)=a^(2)+b^(2)