Home
Class 12
MATHS
x=(3ln^(3)t)/(sin2t)y=(cos^(2)t)/(sin2t)...

x=(3ln^(3)t)/(sin2t)y=(cos^(2)t)/(sin2t)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , if x=(sin^3t)/(sqrt(cos2t)) , y=(cos^3t)/(sqrt(cos2t))

If x=(sin^(3)t)/(sqrt(cos2t)) and y=(cos^(3)t)/(sqrt(cos2t)) , then find (dy)/(dx) .

x=sin t, y= cos 2t.

x = (sin^3t)/(sqrt(cos 2t)), y = (cos^3 t)/(sqrt(cos 2t)) .

If x satisfies the equation x^(2)(int_(0)^( pi/2)(2sin t+3cos t)dt)-x(int_(-3)^(3)(t^(2)sin2t)/(t^(2)+1))-2=0 ,then the value of x is

If x = sin t and y = tan t , then (dy)/(dx) is equal to a) cos ^(2) t b) (1)/( cos ^(3) t ) c) (1)/( cos ^(2) t ) d) sin ^(2) t

The curve represents by x=2(cos t+sin t) and y=5(cos t-sin t) is

The curve represented by x=2(cos t+sin t) and y=5(cos t-sin t) is

If x=a sin2t(1+cos2t) and y=b cos2t(1-cos2t), find the values of (dy)/(dx) at t=(pi)/(4) and t=(pi)/(3)