Home
Class 12
MATHS
" 14."|[1,1+p,1+p+q],[2,3+2p,4+3p+2q],[3...

" 14."|[1,1+p,1+p+q],[2,3+2p,4+3p+2q],[3,6+3p,10+6p+3q]|=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: |[1,1+p,1+p+q],[2,3+2p,4+3p+2q],[3,6+3p,10+6p+3q]|=1

Using properties of determinants, prove that |[1,1+p,1+p+q],[2,3+2p,4+3p+2q],[3,6+3p,10+6p+3q]| = 1

Using properties of determinants. Prove that |[1 ,1+p,1+p+q],[2, 3+2p,4+3p+2q],[3, 6+3p, 10+6p+3q]|=1

Show that |[1,1+p,1+p+q],[2,3+2p,1+3p+2q],[3,6+3p,1+6p+3q]|=1

Using properties of determinants, prove the following: |[1,1+p,1+p+q],[2,3+2p,1+3p+2q],[3,6+3p,1+6p+3q]|=1

Show that |[1,1+p,1+p+q],[2,3+2p,1+3p+2q],[3,6+3p,1+6p+3q]| = 1

Show that |[1,1+p,1+p+q],[2,3+2p,1+3p+2q],[3,6+3p,1+6p+3q]| = 1

Show that: |[1 ,1+p,1+p+q],[2, 3+2p,1+3p+2q],[3, 6+3p,1+6p+3q]|=1 .

Prove that: |[1, 1+p, 1+p+q],[2, 3+2p, 1+3p+2p], [3, 6+3p, 1+6p+3q ]|= 1

Using properties of determinants in Exercise 11 to 15 prove that |{:(1,1+p,1+p+q),(2,3+2p,4+3p+2q),(3,6+3p,10+6p+3q):}|=1