Home
Class 14
MATHS
(sqrt(5)-1)^(2)=8-sqrt(28)...

(sqrt(5)-1)^(2)=8-sqrt(28)

Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt(?)-1)^(2)=8-sqrt(28)

(sqrt(x)-1)^(2)=8-sqrt(28) find the value of x

8. (sqrt(5)-2)^(2)=?-sqrt(80)

If sqrt(2)=1.41 and sqrt(5)=2.24, find the value of (3)/(8sqrt(2)+5sqrt(5))+(2)/(8sqrt(2)-5sqrt(5))

If sqrt(2)=1.414 and sqrt(5)=2.24, find the value of (3)/(8sqrt(2)+5sqrt(5))+(2)/(8sqrt(2)-5sqrt(5))

The following are the steps involved in finding the value of x-y from (sqrt(8)-sqrt(5))/(sqrt(8)+sqrt(5))=x-ysqrt(40) . Arrange them in sequential order. (A) (13-2sqrt(40))/(8-5)=x-ysqrt(40) (B) ((sqrt(8))^(2)+(sqrt(5))^(2)-2(sqrt(8))(sqrt(5)))/((sqrt(8))^(2)-(sqrt(5))^(2))=x-ysqrt(40) (C) x-y=(11)/(3) (D) x=(13)/(3) and y=(2)/(3) (E) ((sqrt(8)-sqrt(5))(sqrt(8)-sqrt(5)))/((sqrt(8)+sqrt(5))(sqrt(8)-sqrt(5)))=x-ysqrt(40)

The value of (1)/(2)((sqrt(5)+1)/(1+sqrt(5)+sqrt(a))+(sqrt(5)-1)/(1-sqrt(5)+sqrt(a)))(sqrt(a)-(4)/(sqrt(a))+2)sqrt(0.002) is :

The simplest form of (sqrt(8+sqrt28)-sqrt(8-sqrt(28)))/(sqrt(8+sqrt(28))+sqrt(8-sqrt(28)))

Solve (sqrt(5)-1)/(sinx)+(sqrt(10+2sqrt(5)))/(cosx)=8,x in (0,pi/2)