Home
Class 10
MATHS
ax+by=c,bx+ay=1+c...

ax+by=c,bx+ay=1+c

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following system of equations: ax+by=c, x+ay=1+c

The three straight lines ax+by=c, bx+cy=a and cx +ay =b are collinear, if

The three striaght lines ax+by=c, bx+cy=a and cx+ay=b are collinear if:

ax+by=1 bx+ay=2

ax+by=5 bx+ay=3

Let a,b,c be real numbers with a^2 + b^2 + c^2 =1 . Show that the equation |[ax-by-c,bx+ay,cx+a],[bx+ay,-ax+by-c,cy+b],[cx+a,cy+b,-ax-by+c]|=0 represents a straight line.

Let a,b,c be real numbers with a^2 + b^2 + c^2 =1. Show that the equation |[ax-by-c,bx+ay,cx+a],[bx+ay,-ax+by-c,cy+b],[cx+a,cy+b,-ax-by+c]|=0 represents a straight line.

ax+by=2; bx+ay=3