Home
Class 11
MATHS
(log(8)17)/(log(9)23)-(log(2sqrt(2))17)/...

(log_(8)17)/(log_(9)23)-(log_(2sqrt(2))17)/(log_(3)23)" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of log_(8)17/(log_(9)23)-log_(2sqrt2)17/(log_(3)23) is equal to

4^(log_(9)3)+9^(log_(2)4)=10^(log_(x)83), then x is equal to

The value of ((log_(2)9)^(2))^(1/(log_(2)(log_(2)9))) xx (sqrt(7))1/(log_(4)7) is ....................

log_((9)/(2))((9)/(sqrt(8)))

(1)/(log_(3)2)+(2)/(log_(9)4)-(3)/(log_(27)8)=0

If (4)^(log_(9) 3)+(9)^(log_(2) 4)=(10)^(log_(x) 83) , then x is equal to

If (4)^(log_(9) 3)+(9)^(log_(2) 4)=(10)^(log_(x) 83) , then x is equal to