Home
Class 12
MATHS
((v))x=sec^(-1)(1+t^(2))/(1-t^(2)),y=tan...

((v))x=sec^(-1)(1+t^(2))/(1-t^(2)),y=tan^(-1)(3t-t^(3))/(1-3t^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sin^(-1)((2t)/(1+t^(2))) and y=tan^(-1)((2t)/(1-t^(2))),-1

Prove that: tan^-1 +tan^-1 ((2t)/(1-t^2))=tan^-1( (3t-t^3)/(1-3t^2)), if - 1/sqrt(3),xlt 1/sqrt(3)

If x=sin^(-1)((2t)/(1+t^2))"and"y=tan^(-1)((2t)/(1-t^2)),-1

Prove that: tan^-1(t) +tan^-1 ((2t)/(1-t^2))=tan^-1( (3t-t^3)/(1-3t^2)), if - 1/sqrt(3),tlt 1/sqrt(3)

Find (dy)/(dx) when : x=cos^(-1)(8t^(4)-8t^(2)+1) , y=sin^(-1)(3t-4t^(3))[0 lt t lt (1)/(2)]

If x=cos ^(-1) (4t^(3) -3t) ,y =tan ^(-1)((sqrt( 1-t^(2)))/( t)),then (dy)/(dx)=

Find (dy)/(dx) where x=cos^(-1)(8t^(4)-8t^(2)+1) and y=sin^(-1)(3t-4t^(3)),[0lt t lt(1)/(2)] .

Find the derivative of tan^(-1)((t)/(sqrt(1-t^(2)))) w.r.t. "sec"^(-1)((1)/(2t^(2)-1)) .