Home
Class 12
MATHS
For the matrix A=[[3 ,1],[ 7, 5]], find ...

For the matrix `A=[[3 ,1],[ 7, 5]],` find `x` and `y` sot that `A^2+x I+y A=0` Hence, Find `A^(-1)`

Text Solution

Verified by Experts

Given that, `A = [[3,1],[7,5]]`
`A^2 = [[3,1],[7,5]][[3,1],[7,5]]`
`Rightarrow A^2 = [[9+7,3+5],[21+35,7+25]] = [[16,8],[56,32]]`

Now, `A^2+xI+yA = 0`
`Rightarrow [[16,8],[56,32]]+x[[1,0],[0,1]]+y[[3,1],[7,5]] = 0`
`Rightarrow [[16+x+3y,8+y],[56+7y,32+x+5y]] = [[0,0],[0,0]]`
`Rightarrow 8+y = 0 => y = -8`
`Rightarrow 16+x+3y = 0 => 16+x+3(-8) = 0 => x = 8`
...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

For the matrix A=[{:(3,1),(7,5):}] . Find 'x' and 'y' so that A^(2)+xI=yA . Hence find A^(-1) .

If A=[{:(3,1),(7,5):}] , find x and y such that A^(2)+xI=yA.

Find the inverse of each of the matrices given below : if A=[(3,1),(7,5)] find x and y such that A^(2)=deltaA-2I . Hence , find A^(-1) .

If A=[3112], show that A^(2)-5A+7I=0 Hence find A^(-1) .

If A= [[3,1] , [-1,2]] then show that A^2 - 5A+7I =0 Hence find A^(-1)

Obtain the characteristic equation of the matrix A=[(1, 0,2),(0,2,1),(2,0,3)] and verify that it is satisfied y A and hence find its inverse.

If (2x + 3,y-1) =(3,5) , then find x and y.

5) 3x-4y=-7;5x-2y=0 find x and y

If (2x+y,7)=(5,y-3) then find x and y

If matrix A=[[2,3,1],[1,2,2],[-3,1,-1]] Find A^(-1) and hence solve the system of equation 2x+y-3z=13,3x+2y+z=4,x+2y-z=8