Show that the matrix `A=[[1, 2 ,2],[ 2 ,1, 2],[ 2, 2, 1]]`
satisfies the equation `A^2-4A-5I_3=0`
and hence find `A^(-1)`
Text Solution
AI Generated Solution
To show that the matrix \( A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \) satisfies the equation \( A^2 - 4A - 5I_3 = 0 \) and to find \( A^{-1} \), we will follow these steps:
### Step 1: Calculate \( A^2 \)
To find \( A^2 \), we multiply matrix \( A \) by itself:
\[
A^2 = A \cdot A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}
...
Topper's Solved these Questions
ADJOINTS AND INVERSE OF MATRIX
RD SHARMA|Exercise QUESTION|1 Videos
ALGEBRA OF MATRICES
RD SHARMA|Exercise Solved Examples And Exercises|410 Videos
Similar Questions
Explore conceptually related problems
Show that the matrix A=[122212221] satisfies the equation A^(2)-4A-5I_(3)=O and hence find A^(-1) .
Find the inverse of each of the matrices given below : Show that the matrix A=[(-8,5),(2,4)] satisfies the equation A^(2)+4A-42I=0 and hence find A^(-1) .
Show that A=[[2,-3],[3,4]] satisfies the equation A^(2)-6A+17=0 .Hence find A^(-1)
Show that A=[[2,-3],[3,4]] satisfies the equation A^(2)-6A+17=0. Hence find A^(-1)
Show that A=[-8524] satisfies the equation A^(2)+4A-42I=O. Hence,find A^(-1).
Show that the matrix A=[{:(2,3),(1,2):}] satisfies the equation A^(2)-4A+I=O and hence, find A^(-1) .
A=[{:(1,3),(2,1):}] satisfy the equation A^2-kA-5I=0 , then find k and also A^(-1) .
If A[{:(2,3),(1,2):}] satisfy the equation A^2-kA+I=0 , then find k also A^(-1) .
Show that A=[2-334] satisfies the equation x^(2)-6x+17=0. Hence,find A^(-1)
1) Find the rank of the matrix [[1,3,2],[2,5,4],[1,2,2]]