Home
Class 12
MATHS
If A=[[cosalpha,-sinalpha,0],[sinalpha,c...

If `A=[[cosalpha,-sinalpha,0],[sinalpha,cosalpha,0],[0, 0, 1]]` find `a d j` and verify that `A(a d jA)=(a d jA)A=|A|I_3`

Text Solution

Verified by Experts

Given that,
`A=[[cosalpha,-sinalpha,0],[sinalpha,cosalpha,0],[0, 0, 1]]` Let `c_ij` be cofactors of matrix `A`
`c_11 =[[cos alpha, 0],[0, 1]]=cos alpha`
`c_12 =-[[sin alpha,0],[0, 1]]=-sin alpha`
`c_13 =[[sin alpha, cos alpha],[0, 0]]=0`
`c_21 =-[[sin alpha , 0],[0, 1]]=-sin alpha`
`c_22 =[[cos alpha , 0],[0, 1]]=cos alpha`
...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

If A=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]] , then (adjA)^(-1)=

A = [ [ cosalpha , sinalpha ], [ sinalpha , cosalpha ] ] ,then find | A |

Let A_(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] , then :

If A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , show that A'A=I.

If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] and A(adjA)=[[k, 0], [0, k]] , then k=

If F(alpha)=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]] , where alphainR , then (F(alpha))^(-1)=

if A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] be such that A+A'=I then alpha

Show : [ [ cosalpha , -sinalpha ] , [ sinalpha , cosalpha ] ]= [ [1 , 0 ] , [ 0 , 1 ]]

Inverse of the matrix {:[(cosalpha,-sinalpha,0),(sinalpha,cosalpha ,0),(0,0,1)]:} is