Home
Class 12
MATHS
If A=[[1,tanx],[-tanx,1]], show that A^...

If `A=[[1,tanx],[-tanx,1]],` show that `A^T A^(-1)=[[cos2x,-sin2x],[sin2x,cos2x]]`

Text Solution

Verified by Experts

Given that, `A = [[1,tanx],[-tanx,1]]`
`therefore |A| = [1-tanx(-tanx)] = 1+tan^2x`

`adj(A) = [[1,-tanx],[tanx,1]]`
`therefore A^-1 = 1/|A| adj(A)`
`Rightarrow A^-1 = 1/(1+tan^2x) [[1,-tanx],[tanx,1]]`

Now, `A^T = [[1,-tanx],[tanx,1]]`

`therefore A^TA^-1 = [[1,-tanx],[tanx,1]]*1/(1+tan^2x) [[1,-tanx],[tanx,1]]`

`= 1/(1+tan^2x) [[1,-tanx],[tanx,1]] [[1,-tanx],[tanx,1]]`

...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,tanx),(-tanx, 1)], " show that " A' A^(-1)=[(cos 2x,-sin 2x),(sin 2x, cos 2x)] .

If A=[1tan x-tan x1], show that A^(T)A^(-1)=[cos2x-sin2x sin2x cos2x]

(d)/(dx)[(1+cos2x+sin2x)/(1+sin2x-cos2x)]=

D((1-cos2x)/(sin2x))=

int(1)/(cos2x+sin2x)dx=

int(sin2x-cos2x)/(sin2x*cos2x)dx=?

If y = {(1-tanx)/(1+tanx)} , show that (dy)/(dx) = (-2)/((1+sin2x)) .

inte^(x)(sin2x-2)/(1-cos2x)dx

Let P(x)=cot^(2)x ((1+tanx+tan^(2)x)/(1+cot x+ cot^(2)x))+((cos x-cos 3x+sin3x-sin x)/(2(sin 2x+cos2x)))^(2) . Then, which of the following is (are) correct ?