Given that, `A = [[1,tanx],[-tanx,1]]`
`therefore |A| = [1-tanx(-tanx)] = 1+tan^2x`
`adj(A) = [[1,-tanx],[tanx,1]]`
`therefore A^-1 = 1/|A| adj(A)`
`Rightarrow A^-1 = 1/(1+tan^2x) [[1,-tanx],[tanx,1]]`
Now, `A^T = [[1,-tanx],[tanx,1]]`
`therefore A^TA^-1 = [[1,-tanx],[tanx,1]]*1/(1+tan^2x) [[1,-tanx],[tanx,1]]`
`= 1/(1+tan^2x) [[1,-tanx],[tanx,1]] [[1,-tanx],[tanx,1]]`
...