Home
Class 12
MATHS
Using elementary row transformation find...

Using elementary row transformation find the inverse of the matrix `A=[[3, -1, -2],[ 2, 0, -1],[ 3 ,-5, 0]]`

Text Solution

Verified by Experts

Given

`A=[[3, -1, -2],[ 2, 0, -1],[ 3 ,-5, 0]]`

`I=A A^(-1)`

`[[3, -1, -2],[ 2, 0, -1],[ 3 ,-5, 0]]=[[1, 0, 0],[ 0, 1, 0],[ 0 ,0, 1]]A \ \ \ \ \ \ (Apply \ \ R_1 rightarrow R_1 - R_2)`

`[[1, -1, -1],[ 2, 0, -1],[ 3 ,-5, 0]]=[[1, -1, 0],[ 0, 1, 0],[ 0 ,0, 1]]A \ \ \ \ \ \ (Apply \ \ R_2 rightarrow R_2 - 2R_1, R_3 rightarrow R_3 - 3R_1)`

`[[1, -1, -1],[ 0, 2, 1],[ 0 ,-2, 3]]=[[1, -1, 0],[ -2, 3, 0],[ -3 ,3, 1]]A \ \ \ \ \ \ (Apply \ \ R_3 + R_2)`

`[[1, -1, -1],[ 0, 2, 1],[ 0 ,0, 4]]=[[-1, -1, 0],[ -2, 3, 0],[ -5 ,6, 1]]A \ \ \ \ \ \ (Apply \ \ R_2 rightarrow R_2/2, R_3 rightarrow R_3/4)`

`[[1, -1, -1],[ 0, 1, 1/2],[ 0 ,0, 1]]=[[1, -1, 0],[ -1, 3/2, 0],[ -5/4 ,6/4, 1/4]]A \ \ \ \ \ \ (Apply \ \ \ R_1 + R_2)`

...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

Using elementary transformations,find the inverse of the matrix

Using elementary transformations,find the inverse of the matrix [[3,15,2]]

Using elementary transformation, find the inverse of the given matrix.

Using elementary transformations,find the inverse of the matrix [[2,35,7]]

Using elementary transformations,find the inverse of the matrix ,[[3,-1-4,2]]

Using elementary transformations,find the inverse of the matrix ,[[1,32,7]]

Using elementary transformations,find the inverse of the matrix [[2,17,4]]

Using elementary transformations,find the inverse of the matrix ,[[2,-3-1,2]]

Using elementary transformations,find the inverse of the matrix [[6,-3-2,1]]

Using elementary transformation,find the inverse of the matrix [[10,-2-5,1]]