If `A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]]`
is such that `A^T=A^(-1)`,find `alpha`
Text Solution
Verified by Experts
Given that,
`A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]]`
`A^T=A^(-1)`
`A^T=[[cosalpha,-sinalpha],[sinalpha,cosalpha]]`
`|A|=1`
`A^-1=[[cosalpha,-sinalpha],[sinalpha,cosalpha]]`
There can be any real values of `alpha`
Topper's Solved these Questions
ADJOINTS AND INVERSE OF MATRIX
RD SHARMA|Exercise QUESTION|1 Videos
ALGEBRA OF MATRICES
RD SHARMA|Exercise Solved Examples And Exercises|410 Videos
Similar Questions
Explore conceptually related problems
If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] , then A^(10)=
if A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] be such that A+A'=I then alpha
If A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , show that A'A=I.
If A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then
If A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] , find 'alpha' satisfy- ing 0ltalphalt(pi)/(2) when A+A^(tau)=sqrt(2)I_(2) , where A^(tau) is transpose of A.
If A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , show that A^(2)=[{:(cos2alpha,sin2alpha),(-sin2alpha,cos2alpha) :}].
If A=[[cosalpha, sinalpha],[-sinalpha, cosalpha]] , prove by mathematicasl induction that, A^n=[[cosnalpha, sin nalpha],[-sin nalpha,cos nalpha]] for every natural number n
A = [ [ cosalpha , sinalpha ], [ sinalpha , cosalpha ] ] ,then find | A |
If A_(alpha)=[(cosalpha,sinalpha),(-sinalpha,cosalpha)] then (A_(alpha))^2=?
If (i) A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] , then verify that AprimeA" "=" "I . (ii) A=[[sinalpha,cosalpha],[-cosalpha,sinalpha]] , then verify that AprimeA" "=" "I .