Home
Class 12
MATHS
If A=[[cosalpha,sinalpha],[-sinalpha,cos...

If `A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]]` is such that `A^T=A^(-1)`,find `alpha`

Text Solution

Verified by Experts

Given that,
`A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]]`
`A^T=A^(-1)`
`A^T=[[cosalpha,-sinalpha],[sinalpha,cosalpha]]`
`|A|=1`
`A^-1=[[cosalpha,-sinalpha],[sinalpha,cosalpha]]`
There can be any real values of `alpha`
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] , then A^(10)=

if A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] be such that A+A'=I then alpha

If A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , show that A'A=I.

If A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then

If A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] , find 'alpha' satisfy- ing 0ltalphalt(pi)/(2) when A+A^(tau)=sqrt(2)I_(2) , where A^(tau) is transpose of A.

If A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , show that A^(2)=[{:(cos2alpha,sin2alpha),(-sin2alpha,cos2alpha) :}].

If A=[[cosalpha, sinalpha],[-sinalpha, cosalpha]] , prove by mathematicasl induction that, A^n=[[cosnalpha, sin nalpha],[-sin nalpha,cos nalpha]] for every natural number n

A = [ [ cosalpha , sinalpha ], [ sinalpha , cosalpha ] ] ,then find | A |

If A_(alpha)=[(cosalpha,sinalpha),(-sinalpha,cosalpha)] then (A_(alpha))^2=?

If (i) A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] , then verify that AprimeA" "=" "I . (ii) A=[[sinalpha,cosalpha],[-cosalpha,sinalpha]] , then verify that AprimeA" "=" "I .