Home
Class 12
MATHS
If x,y,z satisfies the equations x+log(x...

If `x,y,z` satisfies the equations `x+log(x+sqrt(x^2+1))=y,y+log(y+sqrt(y^2+1))=z,z+log(z+sqrt(z^2+1))=x`, then find the value of `(1-x)^2+(1-y)^2+(1-z)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

if,sin^(-1)x+sin^(-1)y+sin^(-1)z=pi then prove that x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If sqrt(x+1)+sqrt(y)+sqrt(z-4)=(x+y+z)/(2), then find x+y+z

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi prove that x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If x,y,z are in HP, then show that log(x+z)+log(x+z-2y)=2 log (x-z)

If x,y,z are in HP, then show that log(x+z)+log(x+z-2y)=2 log (x-z)

If (log^(2)-2(x+1)+log^(2)-2(log_(3)(y))+log^(2)-2(1+log_(2)(z))=0, then the value of (x+y+z) is -

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi, prove that: x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If x, y, z are in A.P then 1/(sqrt(x) + sqrt(y)) , 1/(sqrt(z) + sqrt(x)) , 1/(sqrt(y) + sqrt(z)) are in

The x,y,z are positive real numbers such that log_(2x)z=3,log_(5y)z=6, and log_(xy)z=(2)/(3), then the value of ((1)/(2z)) is .........