Home
Class 11
MATHS
A = (AnnB)uu(A-B) and Auu(B-A) = (AuuB...

`A = (AnnB)uu(A-B)` and `Auu(B-A) = (AuuB)`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any two sets A and B, (A-B)uu(B-A)=? a. (A-B)uuA b. (B-A)uuB c. (AuuB)-(AnnB) d. (AuuB)nn(AnnB)

Let A={x: x in R,x^2-5x+6=0} and B={x:x in R,x^2=9} Find A-B , B-A and verify that (A-B)uu(B-A)=(AuuB)-(AnnB) .

For any two sets Aa n dB , prove that (AuuB)-B=A-B (ii) A=(AnnB)=A-B (iii) A-(A-B)=AnnB (iv) Auu(B-A)=AuuB (A-B)uu(AnnB)=A

Consider the following statements for the two non-empty sets A and B : (1) (AnnB)uu(AnnbarB)uu(barAnnB)=AuuB (2) (Auu(barAnnbarB))=AuuB Which of the above statements is/are correct ?

The symmetric difference of sets A and B is equal to (i) (A-B)uu(B-A) (ii) (B-A)uuB (iii) (AuuB)-(AnnB) (iv) (AuuB)nn(AnnB)

If Aa n dB are two sets, then (A-B)uu(AnnB) is equal to (a) AuuB (b) AnnB (c) A (d) B

If A, B are two sets, prove that AuuB=(A-B)uu(B-A)uu(AnnB) . and prove that n(AuuB)=n(A)+n(B)-n(AnnB) where, n(A) denotes the number of elements in A.

Consider the following : 1. Auu(BnnC)=(AnnB)uu(AnnC) 2. Ann(BuuC)=(AuuB)nn(AuuC) Which of the above is/are correct ?