Home
Class 12
MATHS
" 2."(1)/(sin(x-a)*cos(x-b))...

" 2."(1)/(sin(x-a)*cos(x-b))

Promotional Banner

Similar Questions

Explore conceptually related problems

If int (1)/(sin (x -a ) cos (x -b)) dx = A log | (sin (x -a))/( cos (x -b ))| + B. Then

Integrate the following: int{(5cos^(3)x+2sin^(3)x)/(2sin^(2)x*cos^(2)x)+sqrt(1+sin2x)+(1+2sin x)/(cos^(2)x)+(1-cos2x)/(1+cos2x)}dx

Find the area bounded by the curves y=(sin^(-1)(sin x)+cos^(-1)(cos x)) and y=(sin^(-1)(sin x)+cos^(-1)(cos x))^(2) for 0<=x<=2 pi

If the range of f(x)=tan^(1)x+2sin^(-1)x+cos^(-1)x is [a, b] , then

If the range of f(x)=tan^(1)x+2sin^(-1)x+cos^(-1)x is [a, b] , then

If f(x)sin x cos xdx=(1)/(2(b^(2)-a^(2)))ln f(x)+c, then f(x) is equal to (1)/(a^(2)sin^(2)x+b^(2)cos^(2)x)(b)(1)/(a^(2)sin^(2)x-b^(2)cos^(2)x+b^(2)cos^(2)x+b^(2)cos^(2)x)(d)(1)/(a^(2)cos^(2)x-b^(2)cos^(2)x)

If int (sin^(8)x-cos^(8)x)/(1-2sin^(2)cos^(2)x)dx=A sin 2x+B, then A=

(d)/(dx)(cos (x/2))= (A) (1)/(2)sin(x)/(2) , (B) -(1)/(2)cos(x)/(2) (C) -(1)/(2)sin(x)/(2) , (D) -sin(x)/(4)

pi is the Fundamental period of (A) (1+sin x)/(cos x(1+cos ecx)) (B) |sin x|+|cos x| (C) sin2x+cos2x (D) cos(sin x)+cos(cos x)

f_(1)(x)=sin^(-1)(cos(sin^(2)x)),f_(2)(x)=cos^(-1)(sin(cos^(2)x)),f_(3)(x)=sin^(-1)(cos^(2)x)),f_(4)(x)=cos^(-1)(sin^(2)x)* Then which of the following is/are correct?