Home
Class 12
MATHS
- The greatest integer which divides(p+1...

- The greatest integer which divides(p+1) (p + 2) (p + 3).... (p+q) for all p in N and fixed q in N is(p>q).(a) p! (b) q! (C) p(d) q

Promotional Banner

Similar Questions

Explore conceptually related problems

The greatest integer which divides (p+1)(p+2)(p+3)......(p+q) for all p""inNN and fixed q""inNN is

(p ^^ ~ q)vv q is logical equivalent to (a) p vv q (b) ~P (c) p (d) ~q

P ** q = p^2 - q^2 p $ q = p^2 - q^2 p $ q = p^2 + q^2 p @ q = pq + p + q p Delta q = Remainder of p/q p © q = greatest integer less than or equal to p/q . If p = 8 and q = 10 , then the value of [(p $ q) Delta (p @ q)] ** [(q ** p) @ (q © p)] is :

The value of lim_(x to1)(p/(1-x^p)-q/(1-x^q)),p ,q , in N , equal (a) (p+q)/2 (b) (p q)/2 (c) (p-q)/2 (d) sqrt(p/q)

The value of lim_(x to1)(p/(1-x^p)-q/(1-x^q)),p ,q , in N , equal (a) (p+q)/2 (b) (p q)/2 (c) (p-q)/2 (d) sqrt(p/q)

(p^^~q) is logically equal to 1. p -> q 2. ~ p->q 3. p -> ~ q 4. ~(p ->q)

For the following G.P. s, find S _(n) p, q, ( q ^(2))/( p) , ( q ^(3))/( p) ,...