Home
Class 12
MATHS
sum(i=1)^(2n) sin^(-1)(xi)=npi then the ...

`sum_(i=1)^(2n) sin^(-1)(x_i)=npi` then the value of `sum_(i=1)^n cos^(-1)x_i+sum_(i=1)^n tan^(-1)x_i=` (A) `(npi)/4` (B) `(2/3)npi` (C) `(5/4)npi` (D) `2npi`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(2n)sin^(-1)x_(i)=n pi then find the value of sum_(i=1)^(2n)x_(i)

If sum_(i=1)^(2n) sin^-1x_i = npi then find the value of sum_(i = 1)^(2n) x_i

If sum_(i=1)^(2n)cos^(-1)x_i=0 then find the value of sum_(i=1)^(2n)x_i

If sum_(i=1)^(2n) sin^(-1) x_i=npi , then sum_(i=1)^(2n) x_i equals :

If n in N, sum_(k=1)^(n)cos^(-1)(x_(k))=npi then the value of sum_(k=1)^(n)sin^(-1)(x_(k))=

If n in N, sum_(k=1)^(n)sin^(-1(x_(k))=(npi)/2 then the value of sum_(k=1)^(n)x_(k)=

If sum_(i=1)^(2n) sin^(-1) x_i =npi , then sum_(i=1)^(2n) x_i is equal to :

The value of sum_(n=1)^(10) {sin(2npi)/11-icos(2npi)/11} , is

The solution of sin^(-1)|sin x|=sqrt(sin^(-1)|sin x|) is (a) npi -1 " " (b) n pi (c) npi + 1 " " (d) 2n pi + 1

Find the possible values of tan{(npi)/2+(-1)^npi/4}