Home
Class 11
MATHS
a+ar+ar^(2)+...+ar^(n-1)=(a(1-r^(n)))/(1...

`a+ar+ar^(2)+...+ar^(n-1)=(a(1-r^(n)))/(1-r) forall n in N.`

Promotional Banner

Topper's Solved these Questions

  • LINEAR INEQUALITY

    SUBHASH PUBLICATION|Exercise Three Marks Questions With Answer|13 Videos
  • MATHEMATICAL REASONING

    SUBHASH PUBLICATION|Exercise FIVE MARKS QUESTION WITH ANSWERS|3 Videos

Similar Questions

Explore conceptually related problems

Statement -1 For all natural numbers n , 0.5+0.55+0.555+...... upto n terms =(5)/(9){n-(1)/(9)(1-(1)/(10^n))} , Statement-2 a+ar+ar^2+....+ar^(n-1)=(a(1-r^n))/((1-r)) , for 0lt r lt 1 .

Prove that by using the principle of mathematical induction for all n in N : a+ ar+ ar^(2)+ ..+ ar^(n-1)= (a(r^(n)-1))/(r-1)

1^(2)+2^(2)+3^(2)+............+n^(2)=(n(n+1)(2n+1))/6 forall n in N.

Prove by mathematical induction that sum_(r=0)^(n)r^(n)C_(r)=n.2^(n-1), forall n in N .

1+2+3+............+n=(n(n+1))/2 forall n in N.

1*2*3+2*3*4+...+n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4 forall n in N.

(1+3/1)(1+5/4)(1+7/9)...(1+((2n+1))/n^(2))=(n+1)^(2) forall n in N.

1.2+2.3+3.4+…………..+n(n+1)=n/3(n+1)(n+2) forall n in N.

1^(3)+2^(3)+3^(3)+………….+n^(3)=(n^(2)(n+1)^(2))/4 forall n in N.

1/(2*5)+1/(5*8)+1/(8*11)+............1/((3n-1)(3n+2))=n/((6n+4)) forall n in N.