Home
Class 11
MATHS
Find the sum to n terms of the series 1^...

Find the sum to n terms of the series `1^(2)+(1^(2)+2^(2))+(1^(2)+2^(2)+3^(2))+.....`

Text Solution

Verified by Experts

Let `T_(n)` denote the `n^(th)` term of the given series.
`thereforeT_(n)=1^(2)+2^(2)+3^(2)+.....n^(2)=sumn^(2)`
`=(n(n+1)(2n+1))/(6)=(1)/(6)n(2n^(2)+3n+1)=(2n^(3)+3n^(2)+n)/(6)=(1)/(3)n^(3)+(1)/(2)n^(2)+(1)/(6)n`
`thereforeS_(n)=sumT_(n)=(1)/(3)sumn^(3)+(1)/(2)sumn^(2)+(1)/(6)sumn`
`thereforeS_(n)=sumT_(n)=(1)/(3)sumn^(3)+(1)/(2)sumn^(2)+(1)/(6)sumn`
`=(1)/(3)(n^(2)(n+1)^(2))/(4)+(1)/(2)(n(n+1)(2n+1))/(6)+(1)/(6)(n(n+1))/(2)`
`=(n(n+1))/(12)[n(n+1)+(2n+1)+1]=(n(n+1))/(12)[n^(2)+3n+2]`
`=(n(n+1)(n+1)(2n+1))/(12)=(n(n+1)^(2)(n+2))/(12)`
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    SUBHASH PUBLICATION|Exercise solved example (FIVE MARKS QUESTIONS WITH ANSWERS)|9 Videos
  • RELATIONS AND FUNCTIONS

    SUBHASH PUBLICATION|Exercise FIVE MARKS QUESTIONS WITH ANSWERS|8 Videos
  • SETS

    SUBHASH PUBLICATION|Exercise THREE MARKS QUESETION WITH ANSWERERS|15 Videos

Similar Questions

Explore conceptually related problems

Find the sum to n terms series 1^(2) + (1^(2) + 2^(2)) (1^(2) + 2^(2) + 3^(2)) + . . . . .

Find the sum to 'n' terms of the series 1^(2)+3^(2)+5^(2)+.....+

The sum of n terms of the series 1^(2)-2^(2)+3^(2)-4^(2)+5^(2)-6^(2)+... is

If n is odd then the sum of n terms of the series 1^(2)-2^(2)+3^(2)-4^(2)+5^(2)-6^(2)-.. .. .. .. is

The sum of n terms of the series (3)/(1^(2))+(5)/(1^(2)+2^(2))+ (7)/(1^(2)+2^(2)+3^(2))+.. .. .. is

Find the sum to n terms of the series 1/(1+1^(2)+1^(4))+2/(1+2^(2)+2^(4))+3/(1+3^(2)+3^(4))+… .

Sum to n terms of the series 1+(1+2)+(1+2+3)+.. ..

Sum of 10 terms of the series (3)/(1^(2))+(5)/(1^(2)+2^(2))+(7)/(1+2^(2)+3^(2))+.. .

Find the sum to n terms of the series . 3 xx 1^(2) + 5 xx 2^(2) + 7 xx 3^(2) + . . . . . .

Find the sum to n terms of the series (1)/(1xx2) +(1)/(2xx3)+(1)/(3xx4) + . . . . . .