Home
Class 11
MATHS
Prove that tan(x+y)=(tanx+tany)/(1-tanxt...

Prove that `tan(x+y)=(tanx+tany)/(1-tanxtany)`

Promotional Banner

Topper's Solved these Questions

  • SUPER MODEL QUESTION PAPER

    SUBHASH PUBLICATION|Exercise PART - A|10 Videos
  • STRAIGHT LINES

    SUBHASH PUBLICATION|Exercise FIVE MARKS QUESTIONS WITH ANSWERS|6 Videos
  • SUPER MODEL QUESTION PAPER-1

    SUBHASH PUBLICATION|Exercise Point E|4 Videos

Similar Questions

Explore conceptually related problems

Prove that : tan 3x=(3tanx-tan^(3)x)/(1-3tan^(2)x)

Prove that tan 3x= (3tan x-tan^3 x)/(1-3tan^2 x)

Prove that sin 2x=(2 tan x)/(1+tan^(2)x)

Prove that sin 2x =( 2tan x )/( 1+ tan ^(2) x)

Prove that (sin (x +y) )/( sin (x-y)) = (tan x + tan y)/( tan x - tan y).

Prove that tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy)) when xylt1

Prove that tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)),xygt-1

Prove that (tan((pi)/(4)+x))/(tan((pi)/(4)-x))=((1+tanx)/(1-tanx))^(2)

Show that : tan 3x tan 2x tan x =tan 3x-tan2x-tanx

Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)[(3x=x^(3))/(1-3x^(2))],|x|lt1/(sqrt(3))