Home
Class 11
MATHS
1^(2)+2^(2)+3^(2)+............+n^(2)=(n(...

`1^(2)+2^(2)+3^(2)+............+n^(2)=(n(n+1)(2n+1))/6 forall n in N.`

Promotional Banner

Topper's Solved these Questions

  • PU EDU.DEPT.MODEL QUESTION PAPER (WITH ANSWERS)

    SUBHASH PUBLICATION|Exercise PART - E ( V. Answer any ONE questions)|8 Videos
  • PU EDU.DEPT.MODEL QUESTION PAPER (WITH ANSWERS)

    SUBHASH PUBLICATION|Exercise PART - C ( III. Answer any EIGHT of following questions)|30 Videos
  • PROBABILITY

    SUBHASH PUBLICATION|Exercise TWO MARKS QUESTION WITH ANSWER|20 Videos
  • PUE WEBSITE MODEL QUESTION PAPER - 8

    SUBHASH PUBLICATION|Exercise Part-E|4 Videos

Similar Questions

Explore conceptually related problems

1+2+3+............+n=(n(n+1))/2 forall n in N.

1^(3)+2^(3)+3^(3)+………….+n^(3)=(n^(2)(n+1)^(2))/4 forall n in N.

1*2*3+2*3*4+...+n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4 forall n in N.

1^(2) + 1+ 2^(2) + 2 + 3^(2) + 3+"............"+n^(2) + n is equal to :

1/(2*5)+1/(5*8)+1/(8*11)+............1/((3n-1)(3n+2))=n/((6n+4)) forall n in N.

a+ar+ar^(2)+...+ar^(n-1)=(a(1-r^(n)))/(1-r) forall n in N.

For all n ge 1 prove that 1^(2)+2^(2)+ 3^(2)+4^(2)+….+n^(2)= (n(n+1)(2n+1))/(6)

1.2+2.3+3.4+…………..+n(n+1)=n/3(n+1)(n+2) forall n in N.

(1+3/1)(1+5/4)(1+7/9)...(1+((2n+1))/n^(2))=(n+1)^(2) forall n in N.

lim_(n rarr oo) { n/(n^(2)+1^(2)) + n/(n^(2)+2^(2))+......+ n/(n^(2)+n^(2))} is equal to