Home
Class 11
MATHS
Prove that the Binomial theorem (a + b)^...

Prove that the Binomial theorem `(a + b)^(n) = ""^(n)C_(0)a^(n) + ""^(n)C_(1)a^(n - 1)b + ""^(n)C_(2)a^(n - 2)b^(2) + .. ""^(n)C_(n)b^(n)` for any positive integer 'n'.

Promotional Banner

Topper's Solved these Questions

  • SUPER MODEL QUESTION PAPER-1

    SUBHASH PUBLICATION|Exercise Point E|4 Videos
  • SUPER MODEL QUESTION PAPER-1

    SUBHASH PUBLICATION|Exercise Point C|13 Videos
  • SUPER MODEL QUESTION PAPER

    SUBHASH PUBLICATION|Exercise PART - B|14 Videos
  • SUPER MODEL QUESTION PAPER-2

    SUBHASH PUBLICATION|Exercise Point E|3 Videos

Similar Questions

Explore conceptually related problems

Prove that (x+b)^(n)=""^(n)C_(0) x^(n)+""^(n)C_(1) x^(n-1)b+ ""^(n)C_(2) x^(n-2) b^(2)+...+ ....+..... ""^(n)C_(n) b^(n), and n in N and hence find (101)^(4) .

Prove that 2^(n) gt n for all positive integers n.

If ""^(n)C_(8) = ""^(n)C_(2) Find ""^(n)C_(2) ?

Find 'n' if ""^(n)C_(7)= ""^(n)C_(6) ?

If "" ^(n)C_(5)= ""^(n)C_(10) , then find n ?

Prove that ""^(n)C_(r)+""^(n)C_(r-1)=""^(n+1)C_(r) .

""^(n)C_(n-r)+3.""^(n)C_(n-r+1)+3.""^(n)C_(n-r+2)+""^(n)C_(n-r+3)=""^(x)C_(r)

Prove that n + n is divisible by 2 for any positive integer n.