Home
Class 11
MATHS
If p and q are the lengths of perpendicu...

If p and q are the lengths of perpendicular from the origin to the lines `x cos theta-y sin theta=k cos 2theta and x sec theta+y "cosec" theta=k` respectively, prove that `p^(2)+4q^(2)=k^(2)`.

Promotional Banner

Topper's Solved these Questions

  • SUPER MODEL QUESTION PAPER-2

    SUBHASH PUBLICATION|Exercise Point D|8 Videos
  • SUPER MODEL QUESTION PAPER-1

    SUBHASH PUBLICATION|Exercise Point E|4 Videos
  • SUPER MODEL QUESTION PAPER-3

    SUBHASH PUBLICATION|Exercise Point E|4 Videos

Similar Questions

Explore conceptually related problems

If acos theta+b sin theta=p and a sin theta-b cos theta=q then

x = a cos theta, y = b sin theta .

The locus of the point x=a(cos theta+sin theta) y=b (cos theta-sin theta) is

If cosec theta- sin theta = m and sec theta - cos theta = n , prove that: (m^(2)n)^(2/3)+(n^(2)m)^(2/3)=1 .

What is the distance between the points P ( cos theta , sin theta ) and Q (sin theta - cos theta )

Prove that: (sin theta - cos theta +1)/(sin theta + cos theta -1) = (1)/(sec theta - tan theta)

If p and p' be perpendiculars from the origin upon the straight lines x sec theta+y"cosec"theta=a and x cos theta-y sin theta=a cos 2theta , then the value of the expression 4p^(2)+p'^(2) is :

Prove that: sin theta (1 + tan theta) + cos theta (1+ cot theta) = sec theta + cosec theta .

If x=r cos theta, y=r sin theta Prove that x^(2)+y^(2)=r^(2)