Home
Class 12
MATHS
Find the value of tan^(-1)(x/y)-tan^(-1)...

Find the value of `tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))`

Text Solution

AI Generated Solution

To find the value of \( \tan^{-1}\left(\frac{x}{y}\right) - \tan^{-1}\left(\frac{x-y}{x+y}\right) \), we can use the formula for the difference of two inverse tangent functions: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a - b}{1 + ab}\right) \] ### Step-by-step Solution: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    RD SHARMA|Exercise Solved Examples And Exercises|1401 Videos
  • JEE MAINS PREVIOUS YEAR

    RD SHARMA|Exercise EXAMPLE|1 Videos

Similar Questions

Explore conceptually related problems

Formula for tan^(-1)(x)+-tan^(-1)(y)

Tan^(-1)((x)/(y))-Tan^(-1)((x-y)/(x+y)) is equal to

Knowledge Check

  • If xgt0x,ygt0 and x gty then tan^(-1){(x)/(y)}+tan^(-1){(x+y)/(x-y)} is equal to

    A
    `(pi)/(4)`
    B
    `(pi)/(4)`
    C
    `(3pi)/(4)`
    D
    none of these
  • If x + y + z=xyz and x,y,z gt 0 , then the value of tan^(-1)x + tan^(-1)y + tan^(-1)z is equal to

    A
    `pi//2`
    B
    `pi//4`
    C
    `pi`
    D
    `-pi//4`
  • If x gt 0, y gt 0 and x gt y , then (tan^(-1)(x//y) + tan^(-1)[(x+y)//(x-y)] is equal to

    A
    `-pi//4`
    B
    `pi//4`
    C
    `3pi//4`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    If x<0,\ y<0 such that x y=1 , then write the value of tan^(-1)x+tan^(-1)y .

    Prove that tan^(-1)((x)/(y))-tan^(-1)((x-y)/(x+y)) is (pi)/(4) and Not(-3 pi)/(4)

    If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z

    The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true when the value of xy is "………."

    tan^(-1)x+tan^(-1)y=pi+tan^(-1)((x+y)/(1-xy))