Home
Class 12
MATHS
The value of the determinant of adj(adj(...

The value of the determinant of `adj(adj(adj(A^(-1))))` where `A` is a 3x3 matrix and `|A|=2` is (A) `1/64` (B) `1/256` (C) `1/128` (D) `1/512`

Promotional Banner

Similar Questions

Explore conceptually related problems

A is a 3times3 matrix and |A|=2 then |adj(adj(adjA))| =________ (A) 8 (B) 64 (C) 256 (D) 512

If A is 3x3 matrix and det adj(A)=k then det(adj2A)=

If A is a 3times3 matrix and |A|=2, then |Adj(Adj(Adj(Adj(A)|=

If A is 4xx4 matrix and |2A|=64,B="Adj A" then |"Adj B"|=

Prove that ("adj. "A)^(-1)=("adj. "A^(-1)) .

Prove that ("adj. "A)^(-1)=("adj. "A^(-1)) .

Prove that ("adj. "A)^(-1)=("adj. "A^(-1)) .

Prove that ("adj. "A)^(-1)=("adj. "A^(-1)) .

If A is a matrix of order 3 and |A|=3, then the value of |adj(adj(A^(-1)))| is