Home
Class 12
MATHS
Prove that: tan^(-1){(cos2alphasec2beta...

Prove that: `tan^(-1){(cos2alphasec2beta+cos2betasec2alpha)/2}=tan^(-1){tan^2(alpha+beta)tan^2(alpha-beta)}+tan^(-1)1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1){(cos2\ alphasec2\ beta+cos2betasec2alpha)/2}=tan^(-1){t a n^2(alpha+beta)t a n^2(alpha-beta)}+tan^(-1)1

(cos^2alpha-cos^2beta)/(cos^2alpha cos^2beta)=tan^2beta-tan^2alpha

(1+tan alpha tan beta)^(2)+(tan alpha-tan beta)^(2)=

(cos^(2)alpha-cos^(2)beta)/(cos^(2)alpha*cos^(2)beta)=tan^(2)beta-tan^(2)alpha

If sin(alpha+beta)=1,sin(alpha-beta)=(1)/(2) then tan(alpha+2 beta)tan(2 alpha+beta)=

Show that cos^(-1)((cos alpha+cos beta)/(1+cos alpha cos beta))=2tan^(-1)(tan((alpha)/(2))tan((beta)/(2)))

if 2tan beta+cot beta=tan alpha then prove that cot beta=2tan(alpha-beta)

Prove that: (alpha^3)/2cos e c^2(1/2tan^(-1)(alpha/beta))+(beta^3)/2s e c^2(1/2tan^(-1)(beta/alpha))=(alpha+beta)(alpha^2+beta^2) .

cos 2 alpha =(3 cos 2 beta -1)/( 3-cos 2 beta), then tan alpha=