Home
Class 12
MATHS
If tan^(- 1)(1+x)+tan^(- 1)(1-x)=pi/6, t...

If `tan^(- 1)(1+x)+tan^(- 1)(1-x)=pi/6,` then prove that `x^2=2sqrt3.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)((a+x)/(a) )+ tan ^(-1) ((a-x)/(a)) = (pi)/(6) then prove that x^(2) = 2sqrt(3)a^2

If tan^(-1).(a+x)/(a) + tan ^(-1) ((a-x)/(a)) = (pi)/(6) then prove that x^(2) = 2sqrt(3)a^(2)

If tan^(-1).(a+x)/(a) + tan ^(-1) ((a-x)/(a)) = (pi)/(6) then prove that x^(2) = 2sqrt(3)a^(2)

If sin^(-1)x + tan ^(-1) x = (pi)/(2) , then prove that 2x^(2) + 1 = sqrt(5)

If sin^(-1)x + tan ^(-1) x = (pi)/(2) , then prove that 2x^(2) + 1 = sqrt(5)

If tan^(-1)""(a+x)/a+tan^(-1)""(a-x)/a=pi/6 , then x^(2)=

Prove that: tan^(-1)x+tan^(-1)(1/x)=pi/2

If sin^(-1)x+tan^(-1)x=(pi)/(2) , prove that : 2x^(2)+1=sqrt(5)

if tan^(-1)((sqrt(1+x^(2))-1)/(x))=(pi)/(45) then: