Home
Class 10
MATHS
" 2.The equation "sin^(2)theta=(x^(2)+y^...

" 2.The equation "sin^(2)theta=(x^(2)+y^(2))/(2xy)" is possible if "

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation sin^(2)theta=(x^(2)+y^(2))/(2xy),x,y!=0 is possible if

The equation Sin^(2)theta=(x^(2)+y^(2))/(2xy),x,y!=0 is possible if

The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

If x and y be real,then the equation sin^(2)theta=(x^(2)+y^(2))/(2xy) has solution

If x and y be real, show that the equation : sin^2 theta= (x^2+y^2)/(2xy) is possible only when x =y ne 0 .

Show that sin^(2)theta=(x^(2)+y^(2))/(2xy) is possible for real value of x and y only when x=y!=0

Prove that the relation sin^(2)theta = (x+y)^(2)/4xy is not 4xy possible for any real theta where x in R , y in R such that |x | ne ly| .