Home
Class 12
MATHS
Prove that tan^-1(1/2)+tan^(-1)(1/3)=pi/...

Prove that `tan^-1(1/2)+tan^(-1)(1/3)=pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2tan^-1(1/3)+tan^-1(1/7)=pi/4 .

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

prove that 2tan^-1 (1/3)+tan^-1 (1/7)=pi/4

Prove that tan ^(-1)(1/5) + tan^(-1)(1/7) +tan^(-1)(1/3)+ tan ^(-1)(1/8) = pi/4

Prove that tan^ (-1)( 1/3) +tan^(-1)( 1/5) + tan^(-1) (1/7 )+tan^(-1) (1/8) = pi/4

Prove that tan^(-1) (1/5)+ tan^(-1) (1/7) + tan^(-1) (1/3) + tan^(-1) (1/8) = pi/4

Prove that tan ^(-1)(1/5) + tan^(-1)(1/7) +tan^(-1)(1/3)+ tan ^(-1)(1/8) = pi/4

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4

Prove that : tan^-1(1/2) + tan^-1(1/5) + tan^-1(1/8) = pi/4