Home
Class 11
MATHS
" The integral "int(sec^(2)x)/((sec x-ta...

" The integral "int(sec^(2)x)/((sec x-tan x)^(9/2))dx" equals (for some arbittary constant "K" ) "

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int (sec^(2) x)/((sec x+tan x)^(9//2))dx equals : (for some arbitrary constant k)

The integral int(sec^2x)/((secx+tanx)^(9/2))dx equals (for some arbitrary constant K)dot

The integral int (sec^2x)/(secx+tanx)^(9/2)dx equals to (for some arbitrary constant K )

The integral int(sec^(2)x)/((sec x+tan x)^((9)/(2)))dx equals (for some arbitrary constant K)-(1)/((sec x+tan x)^((11)/(2))){(1)/(11)-(1)/(7)(sec x+tan x)^(2)}+K(1)/((sec x+tan x)^((11)/(2))){(1)/(11)-(1)/(7)(sec x+tan x)^(2)}+K-(1)/((sec x+tan x)^((11)/(2))){(1)/(11)+(1)/(7)(sec x+tan x)^(2)}+K

int (sec^(2)x)/((sec x+ tan x)^(5))dx=

The integral (sec^(2)x)/((sec x+tan x)^((9)/(2))) is equal to

int(sec x+tan x)^(2)dx

int(sec x)/((sec x+tan x)^(2))dx