Home
Class 12
MATHS
" EXAMPLE "11" If "e^(x)+e^(y)=e^(x+y)" ...

" EXAMPLE "11" If "e^(x)+e^(y)=e^(x+y)" ,prove that "(dy)/(dx)=-e^(y-x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(x)+e^(y)=e^(x+y) , prove that (dy)/(dx)+e^(y-x)=0 .

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)+e^(y-x)=0

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)=-(e^x(e^y-1))/(e^y(e^x-1))

If e^x+e^y = e^(x+y) , show that (dy)/(dx) = -e^(y-x)

If e^x+e^y=e^(x+y),p rov e t h a t(dy)/(dx)+e^(y-x)=0

If e^x+e^y=e^(x+y) then prove that dy/dx =- e^(y-x)

If x=e^(x/y) ,prove that (dy)/(dx)=(x-y)/(xlogx)

If x=e^(x//y) , prove that (dy)/(dx)=(x-y)/(xlogx)