Home
Class 12
MATHS
" 1f "tan^(-1)(sqrt(1+x^(2))-1)/(x)=(pi)...

" 1f "tan^(-1)(sqrt(1+x^(2))-1)/(x)=(pi)/(45)," then "

Promotional Banner

Similar Questions

Explore conceptually related problems

if tan^(-1)((sqrt(1+x^(2))-1)/(x))=(pi)/(45) then:

If tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(6), then prove that x^(2)=2sqrt(3).

Prove that tan^(-1).(1)/(sqrt(x^(2) -1)) = (pi)/(2) - sec^(-1) x, x gt 1

Prove that tan^(-1)((1)/(sqrt(x^(2) -1))) = (pi)/(2) - sec^(-1) x, x gt 1

Prove that tan^(-1).(1)/(sqrt(x^(2) -1)) = (pi)/(2) - sec^(-1) x, x gt 1

Prove that tan^(-1).(1)/(sqrt(x^(2) -1)) = (pi)/(2) - sec^(-1) x, x gt 1

If tan^(-1) sqrt((1-sqrt(x))/(1+sqrt(x))) = (pi)/(4)-(alpha)/(2) , then express tan^(2)alpha in terms of x.

If tan^(-1)2x+tan^(-1)3x=(pi)/(2) , then the value of x is equal to a) (1)/(sqrt(6)) b) (1)/(6) c) (1)/(sqrt(3)) d) (1)/(sqrt(2))

Find the real solutions of the eqution tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2)

The number of real solutions of the equation tan^(-1) sqrt( x ( x + 1)) + sin^(-1) sqrt(x^(2) + x + 1) = (pi)/(2) is