Home
Class 12
MATHS
If a1x+b1y+c1z=0, a2x+b2y+c2z=0, a3x+b3...

If `a_1x+b_1y+c_1z=0, a_2x+b_2y+c_2z=0, a_3x+b_3y+c_3z=0` and `|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|=0` , then the given system then

Text Solution

Verified by Experts

Given that,
`a_1x+b_1y+c_1z=0`,
`a_2x+b_2y+c_2z=0, `
`a_3x+b_3y+c_3z=0`
`|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|=0`
so here `D=D_1=D_2=D_3=0`
so it has infinite solution .
Promotional Banner

Topper's Solved these Questions

  • SCALAR TRIPLE PRODUCT

    RD SHARMA|Exercise Solved Examples And Exercises|59 Videos
  • STRAIGHT LINE IN SPACE

    RD SHARMA|Exercise Solved Examples And Exercises|134 Videos

Similar Questions

Explore conceptually related problems

Consider the system of equations a_1x+b_1y+c_1z=0 a_2x+b_2y+c_2z=0 a_3x+b_3y+c_3z=0 if {:abs((a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)):}=0 , then the system has

Three linear equations a_1x+b_1y+c_1z=0, a_2x+b_2y+c_2z=0,a_3x+b_3y+c_3z=0 are consistent if (A) |(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|=0 (B) |(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|=-1 (C) a_1b_1c_1+a_2b_2c_2+a_3b_3c_3=0 (D) none of these

Cosnsider the system of equation a_(1)x+b_(1)y+c_(1)z=0, a_(2)x+b_(2)y+c_(2)z=0, a_(3)x+b_(3)y+c_(3)z=0 if |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0 , then the system has

Consider the following system if equations a_1x+b_1y+c_1z=d_1, a_2x+b_2y+c_2z=d_2, a_3x+b_3y+c_3z=d_3 Let /_\= |(a_1,b_1,c_1), (a_2,b_2,c_2), (a_3,b_3,c_3)|, /_\_1= |(d_1,b_1,c_1), (d_2,b_2,c_2), (d_3,b_3,c_3)|, ,/_\_2=|(a_1,d_1,c_1), (a_2,d_2,c_2), (a_3,d_3,c_3)|,, /_\_3=|(a_1,b_1,cd_1), (a_2,b_2,d_2), (a_3,b_3,d_3)|, The given system of equations will have i. unique solution of /\=0 ii. infinitely many solutions if /_\=/_\_1=/_\_3=0 . iii. no solution if /_\=0 and any of /_\_1, /_\_2, /_\_3 is none zero. On the basis of above informatioin answer thefollowing questions for the following system of linear equations. 2x+ay+6z=8, x+2y+bz=5, x+y+3z=4 The given system of equatioin has unique solution if (A) a=2,b=2 (B) a!=2,b=3 (C) a!=2, b!=3 (D) a=2,b!=3

Consider the following system of equations a_1x+b_1y+c_1z=d_1, a_2x+b_2y+c_2z=d_2, a_3x+b_3y+c_3z=d_3 Let /_\= |(a_1,b_1,c_1), (a_2,b_2,c_2), (a_3,b_3,c_3)|, /_\_1= |(d_1,b_1,c_1), (d_2,b_2,c_2), (d_3,b_3,c_3)|, ,/_\_2=|(a_1,d_1,c_1), (a_2,d_2,c_2), (a_3,d_3,c_3)|,, /_\_3=|(a_1,b_1,cd_1), (a_2,b_2,d_2), (a_3,b_3,d_3)|, The given system of equations will have i. unique solution of /_\!=0 ii. infinitely many solutions if /_\=/_\_1=/_\_3=0 . iii. no solution if /_\=0 and any of /_\_1, /_\_2, /_\_3 is none zero. On the basis of above informatioin answer thefollowing questions for the following system of linear equations. x+y+z=6, x+2y+3z=14, 2x+5y+lamdaz=mu The given system of equations has infinitely many solution if (A) lamda=3, mu=10 (B) lamda!=3, mu=10 (C) lamda=3,mu!=0 (D) lamda!=3, mu!=10

Consider the following system if equations a_1x+b_1y+c_1z=d_1, a_2x+b_2y+c_2z=d_2, a_3x+b_3y+c_3z=d_3 Let /_\= |(a_1,b_1,c_1), (a_2,b_2,c_2), (a_3,b_3,c_3)|, /_\_1= |(d_1,b_1,c_1), (d_2,b_2,c_2), (d_3,b_3,c_3)|, ,/_\_2=|(a_1,d_1,c_1), (a_2,d_2,c_2), (a_3,d_3,c_3)|,, /_\_3=|(a_1,b_1,cd_1), (a_2,b_2,d_2), (a_3,b_3,d_3)|, The given system of equations will have i. unique solution of /_\!=0 ii. infinitely many solutions if /_\=/_\_1=/_\_3=0 . iii. no solution if /_\=0 and any of /_\_1, /_\_2, /_\_3 is none zero. On the basis of above informatioin answer the following questions for the following system of linear equations. 2x+ay+6z=8, x+2y+bz=5, x+y+3z=4 The given system of equatioin has infinitely many solution if (A) a!=2, b!=3 (B) a!=2,b=3 (C) a=2,b epsilonR (D) a!=2, bepsilonR

Consider the following system of equations a_1x+b_1y+c_1z=d_1, a_2x+b_2y+c_2z=d_2, a_3x+b_3y+c_3z=d_3 Let /_\= |(a_1,b_1,c_1), (a_2,b_2,c_2), (a_3,b_3,c_3)|, /_\_1= |(d_1,b_1,c_1), (d_2,b_2,c_2), (d_3,b_3,c_3)|, ,/_\_2=|(a_1,d_1,c_1), (a_2,d_2,c_2), (a_3,d_3,c_3)|,, /_\_3=|(a_1,b_1,d_1), (a_2,b_2,d_2), (a_3,b_3,d_3)| , The given system of equations will have i. unique solution of /_\!=0 ii. infinitely many solutions if /_\=/_\_1=/_\_3=0. iii. no solution if /_\=0 and any of /_\_1, /_\_2, /_\_3 is none zero. On the basis of above informatioin answer thefollowing questions for the following system of linear equations. x+y+z=6, x+2y+3z=14, 2x+5y+lamda=mu The given system of equations has no solution if (A) lamda=8, mu=36 (B) lamda!=8, muepsilon R (C) lamda=8, mu!=36 (D) lamda!=8, mu!=36

Consider the system of equations a_(1) x + b_(1) y + c_(1) z = 0 a_(2) x + b_(2) y + c_(2) z = 0 a_(3) x + b_(3) y + c_(3) z = 0 If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =0 , then the system has

STATEMENT-1: If three points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) are collinear, then |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 STATEMENT-2: If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 then the points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) will be collinear. STATEMENT-3: If lines a_(1)x+b_(1)y+c_(1)=0,a_(2)=0and a_(3)x+b_(3)y+c_(3)=0 are concurrent then |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0

RD SHARMA-SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS-Solved Examples And Exercises
  1. Solve the following system of homogeneous equations: 2x+3y-z=0 x-y-2z...

    Text Solution

    |

  2. Given A=[[1,-1, 0], [2, 3, 4], [0, 1, 2]], B= [[2,2,-4],[-4,2,-4],[2,-...

    Text Solution

    |

  3. If a1x+b1y+c1z=0, a2x+b2y+c2z=0, a3x+b3y+c3z=0 and |(a1,b1,c1),(a2,b...

    Text Solution

    |

  4. Solve the following system of homogeneous equations: x+y-z=0 x-2y+...

    Text Solution

    |

  5. If A=[[1,-1, 1],[ 2, 1,-3],[ 1, 1, 1]], find A^(-1) and hence solve th...

    Text Solution

    |

  6. Show that the following system of equation is consistent. 2x-y+3z=5,3x...

    Text Solution

    |

  7. Solve the following system of equations, using matrix method. x+2y+z=7...

    Text Solution

    |

  8. The number of solutions of the system of equations: 2x+y-z=7 x-3y+2z=...

    Text Solution

    |

  9. An amount of Rs 5000 is put into three investments at the rate of inte...

    Text Solution

    |

  10. The sum of three numbers is 6. If we multiply the third number 2 and ...

    Text Solution

    |

  11. Determine the product [[-4, 4, 4], [-7, 1, 3],[5, -3, -1]][[1, -1, 1]...

    Text Solution

    |

  12. Express the following system of simultaneous linear equation as a m...

    Text Solution

    |

  13. Use matrix method to solve the equations 5x - 7y = 2 and 7x - 5y = 3

    Text Solution

    |

  14. Use matrix method to solve the following system of equations: x-2y-...

    Text Solution

    |

  15. Solve the following system of equations, using matrix method. x+2y+z=7...

    Text Solution

    |

  16. Use matrix method to examine the following system of equations for con...

    Text Solution

    |

  17. Show that the following system of equation is consistent. 2x-y+3z=5,3x...

    Text Solution

    |

  18. If A=[(1,2, 1), (-1, 1,1), (1, -3, 1)], find A^(-1) and hence solve th...

    Text Solution

    |

  19. If A=[(1,2,-3),(2,3,2),(3,-3,-4)] then find A^-1 and hence solve the f...

    Text Solution

    |

  20. The sum of three numbers is 6. If we multiply the third number 2 and ...

    Text Solution

    |