Home
Class 12
MATHS
If f^(prime)(x)=|x|-{x}, where {x} denot...

If `f^(prime)(x)=|x|-{x},` where {x} denotes the fractional part of `x ,` then `f(x)` is decreasing in `(-1/2,0)` (b) `(-1/2,2)` `(-1/2,2)` (d) `(1/2,oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f^(prime)(x)=|x|-{x}, where {x} denotes the fractional part of x , then f(x) is decreasing in (a) (-1/2,0) (b) (-1/2,2) (-1/2,2) (d) (1/2,oo)

If f^(prime)(x)=|x|-{x}, where {x} denotes the fractional part of x , then f(x) is decreasing in (a) (-1/2,0) (b) (-1/2,2) (-1/2,2) (d) (1/2,oo)

If f'(x)=|x|-{x}, where {x} denotes the fractional part of x, then f(x) is decreasing in (-(1)/(2),0)(b)(-(1)/(2),2)(-(1)/(2),2)(d)((1)/(2),oo)

If f'(x)=|x|-{x} where {x} denotes the fractional part of x, then f(x) is decreasing in (-1/2, k) , find k.

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.