Home
Class 12
MATHS
If f(x)=|(log)2x|, then f(1^+)=1 (b)...

If `f(x)=|(log)_2x|,` then `f(1^+)=1` (b) `f(1^-)=-1` `f(1)=1` (c) `f^(prime)(1)=-1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|(log)_(2)x|, then f(1^(+))=1 (b) f(1^(-))=-1f(1)=1( c) f'(1)=-1

If f(x)=|(log)_e x| , then (a) f'(1^+)=1 (b) f^'(1^(-))=-1 (c) f'(1)=1 (d) f'(1)=-1

If f(x)=|(log)_(e)x|, then (a) f'(1^(+))=1 (b) f'(1^(-))=-1( c) f'(1)=1(d)f'(1)=-1

If f(x)=|(log)_(10)x|,t h e na tx=1 a. f(x) is continuous and f^(prime)(1)=(log)_(10)e b. f(x) is continuous and f^(prime)(1)=-(log)_(10)e c. f(x) is continuous and f^(prime)(1^-)=(log)_(10)e d. f(x) is continuous and f^(prime)(1^-)=-(log)_(10)e

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x)=|(log)_(10)x|,t h e na tx=1 f(x) is continuous and f^(prime)(1^+)=(log)_(10)e f(x) is continuous and f^(prime)(1^+)=(log)_(10)e f(x) is continuous and f^(prime)(1^-)=(log)_(10)e f(x) is continuous and f^(prime)(1^-)=-(log)_(10)e

If f(x) = cos(log x) , then f((1)/(x)) f((1)/(y) - (1)/(2)[f((x)/(y)) + f(xy)] =

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))