Home
Class 12
MATHS
The number of distinct real roots of ...

The number of distinct real roots of `|cos e c\ xsecxsecxsecx cos e c\ xsecxsecxsecx cos e c\ x|=0` lies in the interval `pi/4lt=xlt=pi/4` is (a) 1 (b) 2 (c) 3 (d) 0

Text Solution

Verified by Experts

$$ \begin{aligned} &\Delta=\left|\begin{array}{ccc} \operatorname{cosec} x & \sec x & \sec x \\ \sec x & \operatorname{cosec} x & \sec x \\ \sec x & \sec x & \operatorname{cosec} x \end{array}\right| \\ &C_{1} \rightarrow C_{1}+C_{2}+C_{3} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of distinct real roots of |{:(cosec x, secx, secx), (secx, cosecx, secx), (secx, secx, cosecx):}|=0 lies in the interval pi/4lt=xlt=pi/4 is (a) 1 (b) 2 (c) 3 (d) 0

The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,cos x),(cos x,cos x,sin x)|=0 in the interval -(pi)/4 le x le (pi)/4 is

The number of distinct real roots of |[sinx,cosx,cosx],[cosx,sinx,cosx],[cosx,cosx,sinx]|=0 in the interval pi//4lt=xlt=pi//4 is 0 b. 2 c. 1 d. 3

The number of distinct real roots of |sinxcosxcosxcosxsinxcosxcosxcosxsinx|=0 in the interval -pi/4lt=xlt=pi/4 is 0 (b) 2 (c) 1 (d) 3

The number of distinct real roots of |sinxcosxcosxcosxsinxcosxcosxcosxsinx|=0 in the interval -pi/4lt=xlt=pi/4 is 0 (b) 2 (c) 1 (d) 3

The number of distinct real roots of the equation |cosx s in x s in x s in x cos x s in x s in x s in x cos x|=0 in the interval [-\ pi/4,pi/4] is- a. 3 b. \ 4 c. \ 2 d. 1

The number of distinct real roots of the equation, |(cos x, sin x , sin x ),(sin x , cos x , sin x),(sinx , sin x , cos x )|=0 in the interval [-pi/4,pi/4] is :

The number of distinct roots of |(sinx, cosx, cosx),(cosx, sinx, cosx),(cosx,cosx,sinx)|=0 in the interval -pi/4 le x le pi/4 is (A) 0 (B) 2 (C) 1 (4) 2

The number of solution(s) of sin2x+cos4x=2 in the interval (0,2 pi) is 0( b) 2(c)3(d)4