Home
Class 12
MATHS
Prove the identities: |[a^2,a^2-(b-c)^2...

Prove the identities: `|[a^2,a^2-(b-c)^2,b c], [b^2,b^2-(c-a)^2,c a],[ c^2,c^2-(a-b)^2,a b]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)`

Text Solution

Verified by Experts

$$ \Delta=\left|\begin{array}{lll} a^{2} & a^{2}-(b-c)^{2} & b c \\ b^{2} & b^{2}-(c-a)^{2} & c a \\ c^{2} & c^{2}-(a-b)^{2} & a b \end{array}\right|=\left|\begin{array}{ccc} a^{2} & a^{2} & b c \\ b^{2} & b^{2} & c a \\ ...
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos
  • DIFFERENTIABILITY

    RD SHARMA|Exercise Solved Examples And Exercises|136 Videos

Similar Questions

Explore conceptually related problems

Show that |[a^2,a^2-(b-c)^2,bc],[b^2,b^2-(c-a)^2,ca],[c^2,c^2-(a-b)^2,ab]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

Prove that |[a^2, a^2-(b-c)^2, bc],[b^2, b^2-(c-a)^2, ca],[c^2, c^2-(a-b)^2, ab]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

Prove that |(a^2,b^2+c^2,bc),(b^2,c^2+a^2,ca),(c^2,a^2+b^2,ab)|=-(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

Prove that |[(b+c)^2, a^2, bc],[(c+a)^2, b^2, ca],[(a+b)^2, c^2, ab]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

Prove that |{:(a^(2), a^(2)-(b-c)^(2), bc), (b^(2), b^(2)-(c-a)^(2), ca), (c^(2), c^(2)-(a-b)^(2), ab):}|= (a^(2)+b^(2)+c^(2))(a-b)(b-c)(c-a)(a+b+c)

Prove that : |{:(a^(2),b^(2)+c^(2),bc),(b^(2),c^(2)+a^(2),ca),(c^(2),a^(2)+b^(2),ab):}|=-(a-b)(b-c)(c-a)(a+b+c)(a^(2)+b^(2)+c^(2))

Prove: |a^3 2a b^3 2b c^3 2c|=2(a-b)(b-c)(c-a)(a+b+c)

Prove that |[a,b,c] , [a^2,b^2,c^2] , [a^3,b^3,c^3]|= abc(a-b)(b-c)(c-a)

Prove: |(1,b+c ,b^2+c^2),( 1,c+a ,c^2+a^2),( 1,a+b ,a^2+b^2)|=(a-b)(b-c)(c-a)

[[a,a^(2),(b+c)b,b^(2),(a+c)c,c^(2),(a+b)]]=(b-c)(c-a)(a-b)(a+b+c)

RD SHARMA-DETERMINANTS-Solved Examples And Exercises
  1. If A(x1, y1),B(x2, y2) and C(x3,y3) are vertices of an equilateral ...

    Text Solution

    |

  2. If f(x)=|0x-a x-b x+a0x-c x+b x+c0|,t h e n f(x)=0 (b) f(b)=0 (c) f...

    Text Solution

    |

  3. Prove the identities: |[a^2,a^2-(b-c)^2,b c], [b^2,b^2-(c-a)^2,c a],[...

    Text Solution

    |

  4. Prove the identities: |[z, x, y],[ z^2,x^2,y^2],[z^4,x^4,y^4]|=|[x,...

    Text Solution

    |

  5. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |

  6. Without expanding, show that the value of the determinant is zero: ...

    Text Solution

    |

  7. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |

  8. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |

  9. Using the properties of determinants, prove that following |(a-b,-c^2,...

    Text Solution

    |

  10. Prove the identities: |[a, b, c],[ a-b,b-c,c-a],[ b+c,c+a, a+b]|=a^3+...

    Text Solution

    |

  11. For any triangleABC, the value of determinant |[sin^2A,cotA,1],[sin^2B...

    Text Solution

    |

  12. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |

  13. If x , y in R , then the determinant =|(cosx,-sinx,1),(sinx,cosx,1),(...

    Text Solution

    |

  14. The maximum value of Delta=|(1,1,1),(1,1+sintheta,1),(1+costheta,1,1)...

    Text Solution

    |

  15. Prove that: |[-2a, a+b,a+c],[ b+a,-2b,b+c],[c+a, c+b,-2c]|=4(a+b)(b+c...

    Text Solution

    |

  16. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |

  17. If m is a positive integer and Dr=|2r-1\ ^m Cr1m^2-1 2^m m+1s in^2(...

    Text Solution

    |

  18. Without expanding, show that "Delta"=|(a-x)^2(a-y)^2(a-z)^2(b-x)^2(b-y...

    Text Solution

    |

  19. Let Deltar=|[r , x , (n(n+1))/2] , [2r-1 , y , n^2] , [3r-2 , z , (n(3...

    Text Solution

    |

  20. If Deltar=|[2^(r-1)2 , 3^(r-1) , 4. 5^(r-1)] , [x , y , z] , [2^n-1 , ...

    Text Solution

    |